LTC1863/LTC1867 12-/16-Bit, 8-Channel 200ksps ADCs

feATURES

- Sample Rate: 200ksps
- 16-Bit No Missing Codes and ± 2 LSB Max INL
- 8-Channel Multiplexer with:

Single Ended or Differential Inputs and Unipolar or Bipolar Conversion Modes

- SPI/MICROWIRE ${ }^{\text {TM }}$ Serial I/O
- Signal-to-Noise Ratio: 89dB
- Single 5V Operation
- On-Chip or External Reference
- Low Power: 1.3 mA at $200 \mathrm{ksps}, 0.76 \mathrm{~mA}$ at 100 ksps
- Sleep Mode
- Automatic Nap Mode Between Conversions
- 16-Pin Narrow SSOP Package

APPLICATIONS

- Industrial Process Control
- High Speed Data Acquisition
- Battery Operated Systems
- Multiplexed Data Acquisition Systems
- Imaging Systems

DESCRIPTIOn

The LTC ${ }^{\circledR}$ 1863/LTC1867 are pin-compatible, 8-channel 12-/16-bit A/D converters with serial I/O, and an internal reference. The ADCs typically draw only 1.3 mA from a single 5V supply.
The 8-channel input multiplexer can be configured for either single-ended or differential inputs and unipolar or bipolar conversions (or combinations thereof). The automatic nap and sleep modes benefit power sensitive applications.
The LTC1867's DC performance is outstanding with a ± 2 LSB INL specification and no missing codes over temperature. The signal-to-noise ratio (SNR) for the LTC1867 is typically 89 dB , with the internal reference.
Housed in a compact, narrow 16-pin SSOP package, the LTC1863/LTC1867 can be used in space-sensitive as well as low-power applications.

[^0]MICROWIRE is a trademark of National Semiconductor Corp.

BLOCK DIAGRAM

LTC 1863/LTC 1867

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage (VD) -0.3 V to 6 V
Analog Input Voltage
CHO-CH7/COM (Note 3) -0.3 V to ($\left.\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
$\mathrm{V}_{\text {REF }}$, REFCOMP (Note 4) -0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$) Digital Input Voltage (SDI, SCK, CS/CONV)
(Note 4) \qquad - 0.3 V to 10 V

Digital Output Voltage (SDO) -0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Power Dissipation \qquad 500 mW
Operating Temperature Range
LTC1863C/LTC1867C/LTC1867AC \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1863I/LTC1867I/LTC1867AI \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

COnVERTER CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. With external reference (Notes 5,6)

PARAMETER	CONDITIONS		LTC1863			LTC1867			LTC1867A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		\bullet	12			16			16			Bits
No Missing Codes		\bullet	12			15			16			Bits
Integral Linearity Error	Unipolar (Note 7) Bipolar				$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 4 \\ & \pm 4 \end{aligned}$			$\begin{gathered} \pm 2 \\ \pm 2.5 \end{gathered}$	LSB
Differential Linearity Error		\bullet			± 1	-2		3	-1		1.75	LSB
Transition Noise				0.1			0.74			0.74		$L_{\text {LSBMS }}$
Offset Error	Unipolar (Note 8) Bipolar				$\begin{aligned} & \pm 3 \\ & \pm 4 \end{aligned}$			$\begin{aligned} & \pm 32 \\ & \pm 64 \end{aligned}$			$\begin{aligned} & \pm 32 \\ & \pm 64 \end{aligned}$	LSB
Offset Error Match	Unipolar Bipolar				$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	LSB
Offset Error Drift				± 0.5			± 0.5			± 0.5		ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error	Unipolar Bipolar				$\begin{aligned} & \pm 6 \\ & \pm 6 \end{aligned}$			$\begin{aligned} & \pm 96 \\ & \pm 96 \end{aligned}$			$\begin{aligned} & \pm 64 \\ & \pm 64 \end{aligned}$	LSB
Gain Error Match					± 1			± 4			± 2	LSB
Gain Error Tempco	Internal Reference External Reference			$\begin{aligned} & \pm 15 \\ & \pm 2.7 \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \pm 2.7 \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \pm 2.7 \end{aligned}$		$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}-5.25 \mathrm{~V}$			± 1			± 5			± 5		LSB

DYNAMIC ACCURACY (Note 5)

		LTC1863		LTC1867/LTC1867A		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN
TYP	MAX	UNITS				
SNR	Signal-to-Noise Ratio	1 kHz Input Signal	73.6	89	dB	
S/(N+D)	Signal-to-(Noise + Distortion) Ratio	1 kHz Input Signal	73.5	88	dB	

DYOAMIC ACCURACY (Note 5)

			LTC1863		LTC1867/LTC1867A	
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN
TYP	MAX	UNITS				
THD	Total Harmonic Distortion	1kHz Input Signal, Up to 5th Harmonic	-94.5	-95	dB	
	Peak Harmonic or Spurious Noise	1kHz Input Signal	-94.5	-95	dB	
	Channel-to-Channel Isolation	100kHz Input Signal	-100	-117	dB	
	Full Power Bandwidth	-3dB Point	1.25	1.25	MHz	

Anfloc InPUT The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1863/LTC1867/LTC1867A MIN TYP MAX		UNITS
	Analog Input Range	Unipolar Mode (Note 9) Bipolar Mode	\bullet	$\begin{array}{r} 0-4.096 \\ +2.048 \end{array}$		V
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance for CHO to CH7/COM	Between Conversions (Sample Mode) During Conversions (Hold Mode)		$\begin{gathered} 32 \\ 4 \end{gathered}$		pF
${ }^{\text {taCQ }}$	Sample-and-Hold Acquisition Time		\bullet	1.51 .1		$\mu \mathrm{S}$
	Input Leakage Current	On Channels, $\mathrm{CHX}=0 \mathrm{~V}$ or V_{DD}	\bullet		± 1	$\mu \mathrm{A}$

InTERMAL REFERENCE CHARACTERISTICS (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX

DIGITAL INPUTS AПD DIGITAL OUTPUTS The • denotes the specifications which apply over the

 full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. (Note 5)| SYMBOL | PARAMETER | CONDITIONS | | LTC1863/LTC1867/LTC1867A MIN TYP MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V_{IH} | High Level Input Voltage | $V_{\text {DD }}=5.25 \mathrm{~V}$ | \bullet | 2.4 | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | $V_{D D}=4.75 \mathrm{~V}$ | \bullet | 0.8 | V |
| $\mathrm{I}_{\text {IN }}$ | Digital Input Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD} | \bullet | ± 10 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\text {IN }}$ | Digital Input Capacitance | | | 2 | pF |
| V_{OH} | High Level Output Voltage (SDO) | $\begin{aligned} & V_{D D}=4.75 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{D D}=4.75 \mathrm{~V}, I_{0}=-200 \mu \mathrm{~A} \end{aligned}$ | \bullet | $\begin{array}{ll} \hline & 4.75 \\ 4 & 4.74 \\ \hline \end{array}$ | V |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage (SDO) | $\begin{array}{\|l\|} \hline V_{D D}=4.75 \mathrm{~V}, I_{0}=160 \mu \mathrm{~A} \\ V_{D D}=4.75 \mathrm{~V}, I_{0}=1.6 \mathrm{~mA} \\ \hline \end{array}$ | \bullet | $\begin{array}{ll} \hline 0.05 & \\ 0.10 & 0.4 \\ \hline \end{array}$ | V V |
| ${ }_{\text {I SOURCE }}$ | Output Source Current | SDO $=0 \mathrm{~V}$ | | -32 | mA |
| ISINK | Output Sink Current | SDO $=\mathrm{V}_{\mathrm{DD}}$ | | 19 | mA |
| | Hi-Z Output Leakage Hi-Z Output Capacitance | $\begin{aligned} & \hline \overline{\overline{C S}} / C O N V=\text { High, } \mathrm{SDO}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \overline{\mathrm{CS}} / \mathrm{CONV}=\text { High (Note 10) } \end{aligned}$ | \bullet | $\begin{gathered} \pm 10 \\ 15 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{pF} \end{aligned}$ |
| | Data Format | Unipolar Bipolar | | Straight Binary Two's Complement | |

POUER REQUIREMEMTS The e denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1863/LTC1867/LTC1867A		UNITS
				MIN TYP	MAX	
$V_{D D}$	Supply Voltage	(Note 9)		4.75	5.25	V
$l_{\text {DD }}$	Supply Current	$\mathrm{f}_{\text {SAMPLE }}=200 \mathrm{ksps}$ NAP Mode SLEEP Mode	\bullet \bullet	$\begin{aligned} & 1.3 \\ & 150 \\ & 0.2 \end{aligned}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$	$m A$ μA μA
P $\overline{\text { DISS }}$	Power Dissipation		\bullet	6.5	9	mW

timing CHARACTERISTICS
The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1863/LTC1867/LTC1867A			UNITS
				MIIN	TYP	MAX	
$\mathrm{f}_{\text {SAMPLE }}$	Maximum Sampling Frequency		-	200			kHz
$\mathrm{t}_{\text {CONV }}$	Conversion Time		\bullet		3	3.5	$\mu \mathrm{S}$
$\mathrm{t}_{\text {ACQ }}$	Acquisition Time		\bullet	1.5	1.1		$\mu \mathrm{S}$
$\mathrm{f}_{\text {SCK }}$	SCK Frequency					40	MHz
t_{1}	$\overline{\text { CS/CONV High Time }}$	Short $\overline{\text { CS }} / \mathrm{CONV}$ Pulse Mode	\bullet	40	100		ns
t_{2}	SDO Valid After SCK \downarrow	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ (Note 11)	\bullet		13	22	ns
t_{3}	SDO Valid Hold Time After SCK \downarrow	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	\bullet	5	11		ns
t_{4}	SDO Valid After $\overline{C S} /$ CONV \downarrow	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	\bullet		10	30	ns
t_{5}	SDI Setup Time Before SCK \uparrow		\bullet	15	-6		ns
t_{6}	SDI Hold Time After SCK \uparrow		\bullet	10	4		ns
t_{7}	SLEEP Mode Wake-Up Time	$\mathrm{C}_{\text {REFCOMP }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {VREF }}=2.2 \mu \mathrm{~F}$			60		ms
t_{8}	Bus Relinquish Time After $\overline{\mathrm{CS}} / \mathrm{CONV} \uparrow$	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	\bullet		20	40	ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND (unless otherwise noted).
Note 3: When these pin voltages are taken below GND or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents of greater than 100 mA without latchup.
Note 4: When these pin voltages are taken below GND, they will be clamped by internal diodes. This product can handle input currents of greater than 100 mA below GND without latchup. These pins are not clamped to $V_{D D}$.
Note 5: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{f}_{\text {SAMPLE }}=200 \mathrm{ksps}$ at $25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ and $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ for bipolar mode unless otherwise specified.

Note 6: Linearity, offset and gain error specifications apply for both unipolar and bipolar modes. The INL and DNL are tested in bipolar mode.
Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 8: Unipolar offset is the offset voltage measured from $+1 / 2$ LSB when the output code flickers between 0000000000000000 and 0000000000000001 for LTC1867 and between 000000000000 and 000000000001 for LTC1863. Bipolar offset is the offset voltage measured from -1/2LSB when output code flickers between 00000000 00000000 and 1111111111111111 for LTC1867, and between 000000000000 and 111111111111 for LTC1863.
Note 9: Recommended operating conditions. The input range of $\pm 2.048 \mathrm{~V}$ for bipolar mode is measured with respect to $\mathrm{V}_{1 N^{-}}=2.5 \mathrm{~V}$.
Note 10: Guaranteed by design, not subject to test.
Note 11: t_{2} of 25 ns maximum allows $\mathrm{f}_{\mathrm{Sck}}$ up to 20 MHz for rising capture with 50% duty cycle and $\mathrm{f}_{\text {SCK }}$ up to 40 MHz for falling capture (with 3ns setup time for the receiving logic).

TYPICAL PGRFORMANCE CHARACTERISTICS (LTC1867)

LTC 1863/LTC1867

TYPICAL PGRFORMANCE CHARACTERISTICS (LTc1863/LC1867)

18637 G13

PIn functions

CHO-CH7/COM (Pins 1-8): Analog Input Pins. Analog inputs must be free of noise with respect to GND. CH7/ COM can be either a separate channel or the common minus input for the other channels.
REFCOMP (Pin 9): Reference Buffer Output Pin. Bypass to GND with $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitor (4.096V Nominal). To overdrive REFCOMP, tie $\mathrm{V}_{\text {REF }}$ to GND.
$\mathbf{V}_{\text {REF }}$ (Pin 10): 2.5 V Reference Output. This pin can also be used as an external reference buffer input for improved accuracy and drift. Bypass to GND with $2.2 \mu \mathrm{~F}$ tantalum capacitor in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitor.
$\overline{\mathrm{CS}} / \mathrm{CONV}$ (Pin 11): This input provides the dual function of initiating conversions on the ADC and also frames the serial data transfer.

SCK (Pin 12): Shift Clock. This clock synchronizes the serial data transfer.
SDO (Pin 13): Digital Data Output. The A/D conversion result is shifted out of this output. Straight binary format for unipolar mode and two's complement format for bipolar mode.
SDI (Pin 14): Digital Data Input Pin. The A/D configuration word is shifted into this input.
GND (Pin 15): Analog and Digital GND.
$V_{D D}$ (Pin 16): Analog and Digital Power Supply. Bypass to GND with $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitor.

TYPICAL CONNECTION DIAGRAM

TEST CIRCUITS

Load Circuits for Access Timing

(A) $\mathrm{Hi}-\mathrm{Z} \mathrm{TO} \mathrm{V}_{\mathrm{OH}}$ AND V_{OL} TO V_{OH}

(B) $\mathrm{Hi}-\mathrm{Z} \mathrm{TO} \mathrm{V}_{\mathrm{OL}}$ AND V_{OH} TO V_{OL}

Load Circuits for Output Float Delay

(A) V_{OH} TO Hi-Z

LTC 1863/LTC1867

tIming DIAGRAMS

APPLICATIONS INFORMATION

Overview

The LTC1863/LTC1867 are complete, low power multiplexed ADCs. They consist of a 12-/16-bit, 200ksps capacitive successive approximation A/D converter, a precision internal reference, a configurable 8-channel analog input multiplexer (MUX) and a serial port for data transfer.

Conversions are started by a rising edge on the CS/CONV input. Once a conversion cycle has begun, it cannot be restarted. Between conversions, the ADCs receive an input word for channel selection and output the conversion result, and the analog input is acquired in preparation for the next conversion. In the acquire phase, a minimum time of 1.5μ s will provide enough time for the sample-and-hold capacitors to acquire the analog signal.

During the conversion, the internal differential 16-bit capacitive DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). The input is sucessively compared with the binary weighted charges supplied by the differential capacitive DAC. Bit decisions are made by a low-power, differential comparator. At the end of a conversion, the DAC output balances the analog input. The SAR contents (a 12-/16-bit data word) that represent the analog input are loaded into the 12-/16-bit output latches.

LTC1863/LTC1867

APPLICATIONS INFORMATION

Analog Input Multiplexer

The analog input multiplexer is controlled by a 7-bit input data word. The input data word is defined as follows:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \text { SD } & \text { OS } & \text { S1 } & \text { SO } & \text { COM } & \text { UNI } \\
\hline
\end{array}
$$

SD = SINGLE/DIFFERENTIAL BIT
OS = ODD/SIGN BIT
S1 = ADDRESS SELECT BIT 1
SO = ADDRESS SELECT BIT 0
COM = CH7/COM CONFIGURATION BIT
UNI = UNIPOLAR/BIPOLAR BIT
SLP = SLEEP MODE BIT

Examples of Multiplexer Options

Combinations of Differential
and Single-Ended and Single-Ended

Changing the MUX Assignment "On the Fly"
1st Conversion

2nd Conversion

Tables 1 and 2 show the configurations when $\mathrm{COM}=0$, and COM = 1 .

Table 1. Channel Configuration (When COM $=0, \mathrm{CH} 7 / \mathrm{COM}$ Pin Is Used as CH7)

SD	OS	S1	SO	COM	Channel Configuration	
" + "	""					
0	0	0	0	0	CH0	CH1
0	0	0	1	0	CH2	CH3
0	0	1	0	0	CH4	CH5
0	0	1	1	0	CH6	CH7
0	1	0	0	0	CH1	CH0
0	1	0	1	0	CH3	CH2
0	1	1	0	0	CH5	CH4
0	1	1	1	0	CH7	CH6
1	0	0	0	0	CH0	GND
1	0	0	1	0	CH2	GND
1	0	1	0	0	CH4	GND
1	0	1	1	0	CH6	GND
1	1	0	0	0	CH1	GND
1	1	0	1	0	CH3	GND
1	1	1	0	0	CH5	GND
1	1	1	1	0	CH7	GND

Table 2. Channel Configuration (When COM $=1, \mathrm{CH} 7 / \mathrm{COM}$ Pin Is Used as COMMON)

SD	OS	S1	SO	COM	Channel Configuration "+"	
1	0	0	0	1	CHO	$\mathrm{CH7/COM}$
1	0	0	1	1	CH 2	$\mathrm{CH7} / \mathrm{COM}$
1	0	1	0	1	CH 4	$\mathrm{CH7} / \mathrm{COM}$
1	0	1	1	1	CH 6	$\mathrm{CH7/COM}$
1	1	0	0	1	CH 1	$\mathrm{CH7/COM}$
1	1	0	1	1	CH 3	$\mathrm{CH7/COM}$
1	1	1	0	1	CH 5	$\mathrm{CH} 7 / \mathrm{COM}$

APPLICATIONS InFORMATION

Driving the Analog Inputs

The analog inputs of the LTC1863/LTC1867 are easy to drive. Each of the analog inputs can be used as a singleended input relative to the GND pin (CHO-GND, CH1-GND, etc) or in pairs (CHO and $\mathrm{CH} 1, \mathrm{CH} 2$ and $\mathrm{CH} 3, \mathrm{CH} 4$ and CH 5 , CH 6 and CH 7) for differential inputs. In addition, CH 7 can act as a COM pin for both single-ended and differential modes if the COM bit in the input word is high. Regardless of the MUX configuration, the " + " and " - " inputs are sampled at the same instant. Any unwanted signal that is common mode to both inputs will be reduced by the common mode rejection of the sample-and-hold circuit. The inputs draw only one small current spike while charging the sample-and-hold capacitors during the acquire mode. In conversion mode, the analog inputs draw only a small leakage current. If the source impedance of the driving circuit is low then the LTC1863/LTC1867 inputs can be driven directly. More acquisition time should be allowed for a higher impedance source.
The following list is a summary of the op amps that are suitable for driving the LTC1863/LTC1867. More detailed information is available in the Linear Technology data books or Linear Technology website.
LT1007 - Low noise precision amplifier. 2.7 mA supply current $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies. Gain bandwidth product 8MHz. DC applications.
LT1097- Low cost, low power precision amplifier. $300 \mu \mathrm{~A}$ supply current. $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies. Gain bandwidth product 0.7MHz. DC applications.
LT1227-140MHz video current feedback amplifier. 10 mA supply current. $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies. Low noise and low distortion.

LT1360-37MHz voltage feedback amplifier. 3.8mA supply current. $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies. Good AC/DC specs.
LT1363-50MHz voltage feedback amplifier. 6.3mA supply current. Good AC/DC specs.
LT1364/LT1365 - Dual and quad 50MHz voltage feedback amplifiers. 6.3 mA supply current per amplifier. Good AC/DC specs.
LT1468-90MHz, 22V/us 16-bit accurate amplifier
LT1469-Dual LT1468

Input Filtering

The noise and the distortion of the input amplifier and other circuitry must be considered since they will add to the LTC1863/LTC1867 noise and distortion. Noisy input circuitry should be filtered prior to the analog inputs to minimize noise. A simple 1-pole RC filter is sufficient for many applications. For instance, Figure 1 shows a 50Ω source resistor and a 2000 pF capacitor to ground on the input will limit the input bandwidth to 1.6 MHz . The source impedance has to be kept low to avoid gain error and degradation in the AC performance. The capacitor also acts as a charge reservoir for the input sample-and-hold and isolates the ADC input from sampling glitch sensitive circuitry. High quality capacitors and resistors should be used since these components can add distortion. NPO and silver mica type dielectric capacitors have excellent linearity. Carbon surface mount resistors can also generate distortion from self heating and from damage that may occur during soldering. Metal film surface mount resistors are much less susceptible to both problems.

APPLICATIONS INFORMATION

Figure 1a. Optional RC Input Filtering for Single-Ended Input

Figure 1b. Optional RC Input Filtering for Differential Inputs

DC Performance

One way of measuring the transition noise associated with a high resolution ADC is to use a technique where a DC signal is applied to the input of the ADC and the resulting output codes are collected over a large number of conversions. For example, in Figure 2 the distribution of output codes is shown for a DC input that had been digitized 4096 times. The distribution is Gaussian and the RMS code transition noise is about 0.74LSB.

Figure 2. LTC1867 Histogram for 4096 Conversions

Dynamic Performance

FFT (Fast Fourier Transform) test techniques are used to test the ADC's frequency response, distortion and noise at the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FFT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental.

Signal-to-Noise Ratio

The Signal-to-Noise and Distortion Ratio (SINAD) is the ratio between the RMS amplitude of the fundamental input frequency to the RMS amplitude of all other frequency components at the A / D output. The output is band limited to frequencies from above DC and below half the sampling frequency. Figure 3 shows a typical SINAD of 87.9 dB with a 200 kHz sampling rate and a 1 kHz input. When an external 5 V is applied to REFCOMP (tie $\mathrm{V}_{\text {REF }}$ to GND), a signal-to-noise ratio of 90 dB can be achieved.

Figure 3. LTC1867 Nonaveraged 4096 Point FFT Plot

Total Harmonic Distortion

Total Harmonic Distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
T H D=20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2} \ldots+V_{N}^{2}}}{V_{1}}
$$

APPLICATIONS InFORMATION

where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{N} are the amplitudes of the second through Nth harmonics.

Internal Reference

The LTC1863/LTC1867 has an on-chip, temperature compensated, curvature corrected, bandgap reference that is factory trimmed to 2.5 V . It is internally connected to a reference amplifier and is available at $\mathrm{V}_{\text {REF }}$ (Pin 10). A 6 k resistor is in series with the output so that it can be easily overdriven by an external reference if better drift and/or accuracy are required as shown in Figure 4. The reference amplifier gains the $V_{\text {REF }}$ voltage by 1.638 V to 4.096 V at REFCOMP (Pin 9). This reference amplifier compensation pin, REFCOMP, must be bypassed with a $10 \mu \mathrm{~F}$ ceramic or tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic for best noise performance.

Figure 4a. LT1867 Reference Circuit

Figure 4b. Using the LT1019-2.5 as an External Reference

Digital Interface

The LTC1863/LTC1867 have very simple digital interface that is enabled by the control input, $\overline{\mathrm{CS}} / \mathrm{CONV}$. A logic rising edge applied to the $\overline{\mathrm{CS}} / \mathrm{CONV}$ input will initiate a conversion. After the conversion, taking $\overline{\mathrm{CS}} / \mathrm{CONV}$ Iow will enable the serial port and the ADC will present digital data in two's complement format in bipolar mode or straight binary format in unipolar mode, through the SCK/SDO serial port.

Internal Clock

The internal clock is factory trimmed to achieve a typical conversion time of $3 \mu \mathrm{~s}$ and a maximum conversion time, $3.5 \mu \mathrm{~s}$, over the full operating temperature range. The typical acquisition time is $1.1 \mu \mathrm{~s}$, and a throughput sampling rate of 200 ksps is tested and guaranteed.

Automatic Nap Mode

The LTC1863/LTC1867 go into automatic nap mode when $\overline{\mathrm{CS}} / \mathrm{CONV}$ is held high after the conversion is complete. With a typical operating current of 1.3 mA and automatic $150 \mu \mathrm{~A}$ nap mode between conversions, the power dissipation drops with reduced sample rate. The ADC only keeps the $\mathrm{V}_{\text {REF }}$ and REFCOMP voltages active when the part is in the automatic nap mode. The slower the sample rate allows the power dissipation to be lower (see Figure 5).

Figure 5. Supply Current vs $\mathrm{f}_{\text {SAMPLE }}$

APPLICATIONS INFORMATION

If the $\overline{C S} / C O N V$ returns low during a bit decision, it can create a small error. For best performance ensure that the $\overline{\mathrm{CS}} / \mathrm{CONV}$ returns low either within 100 ns after the conversion starts (i.e. before the first bit decision) or after the conversion ends. If $\overline{\mathrm{CS}} / \mathrm{CONV}$ is low when the conversion ends, the MSB bit will appear on SDO at the end of the conversion and the ADC will remain powered up.

Sleep Mode

If the SLP = 1 is selected in the input word, the ADC will enter SLEEP mode and draw only leakage current (provided that all the digital inputs stay at GND or $V_{D D}$). After release from the SLEEP mode, the ADC need 60 ms to wake up ($2.2 \mu \mathrm{~F} / 10 \mu \mathrm{~F}$ bypass capacitors on $\mathrm{V}_{\text {REF }} /$ REFCOMP pins).

Broad Layout and Bypassing

To obtain the best performance, a printed circuit board with a ground plane is required. Layout for the printed circuit board should ensure digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital signal alongside an analog signal.

All analog inputs should be screened by GND. V REF, REFCOMP and $V_{D D}$ should be bypassed to this ground plane as close to the pin as possible; the low impedance of the common return for these bypass capacitors is essential to the low noise operation of the ADC. The width for these tracks should be as wide as possible.

Timing and Control

Conversion start is controlled by the $\overline{\mathrm{CS}} / \mathrm{CONV}$ digital input. The rising edge transition of the $\overline{\mathrm{CS}} / \mathrm{CONV}$ will start a conversion. Once initiated, it cannot be restarted until the conversion is complete. Figures 6 and 7 show the timing diagrams for two types of CS/CONV pulses.
Example 1 (Figure 6) shows the LTC1863/LTC1867 operating in automatic nap mode with $\overline{C S} / C O N V$ signal staying HIGH after the conversion. Automatic nap mode provides power reduction at reduced sample rate. The ADCs can also operate with the $\overline{\mathrm{CS}} / \mathrm{CONV}$ signal returning LOW before the conversion ends. In this mode (Example 2, Figure 7), the ADCs remain powered up.
Figures 8 and 9 are the transfer characteristics for the bipolar and unipolar mode.

Figure 6. Example 1, $\overline{\mathrm{CS}} / \mathrm{CONV}$ Starts a Conversion and Remains HIGH Until Next Data Transfer. With $\overline{\mathrm{CS}} / \mathrm{CONV}$ Remaining HIGH after the Conversion, Automatic Nap Modes Provides Power Reduction at Reduced Sample Rate.

APPLICATIONS Information

Figure 7. Example 2, $\overline{\mathrm{CS}} / \mathrm{CONV}$ Starts a Conversion with Short Active HIGH Pulse. With CS/CONV Returning LOW Before the Conversion, the ADC Remains Powered Up.

Figure 8. LTC1863/LTC1867 Bipolar Transfer Characteristics (Two's Complement)

Figure 9. LTC1863/LTC1867 Unipolar Transfer Characteristics (Straight Binary)

PACKAGE DESCRIPTION

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

LTC1863/LTC1867

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1417	14-Bit, 400ksps Serial ADC	20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package
LT1460	Micropower Precision Series Reference	
LT1468/LT1469	Single/Dual 90MHz, 22V/us, 16-Bit Accurate Op Amps	Low Input Offset: $75 \mu \mathrm{~V} / 125 \mu \mathrm{~V}$
LTC1609	16-Bit, 200ksps Serial ADC	65 mW , Configurable Bipolar and Unipolar Input Ranges, 5V Supply
LT1790	Micropower Low Dropout Reference	$60 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, SOT-23 Package
LTC1850/LTC1851	10-Bit/12-Bit, 8-Channel, 1.25Msps ADC	Parallel Output, Programmable MUX and Sequencer, 5V Supply
LTC1852/LTC1853	10-Bit/12-Bit, 8-Channel, 400ksps ADC	Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply
LTC1860/LTC1861	12-Bit, 1-/2-Channel 250ksps ADC in MSOP	$850 \mu \mathrm{~A}$ at $250 \mathrm{ksps}, 2 \mu \mathrm{~A}$ at $1 \mathrm{ksps}, \mathrm{SO} 08$ and MSOP Packages
LTC1860L/LTC1861L	3V, 12-Bit, 1-/2-Channel 150ksps ADC	$450 \mu \mathrm{~A}$ at $150 \mathrm{ksps}, 10 \mu \mathrm{~A}$ at 1 $\mathrm{ksps}, \mathrm{SO}-8$ and MSOP Packages
LTC1864/LTC1865	16-Bit, 1-/2-Channel 250ksps ADC in MSOP	$850 \mu \mathrm{~A}$ at $250 \mathrm{ksps}, 2 \mu \mathrm{~A}$ at $1 \mathrm{ksps}, \mathrm{SO}-8$ and MSOP Packages
LTC1864L/LTC1865L	3V, 16-Bit, 1-/2-Channel 150ksps ADC in MSOP	$450 \mu \mathrm{~A}$ at 150ksps, $10 \mu \mathrm{~A}$ at 1 $\mathrm{ksps}, \mathrm{SO}-8$ and MSOP Packages

[^0]: $\mathbf{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation.

